SPECTRES DE VIBRATION DE COMPOSÉS ORGANIQUES DE LA COLON-NE IVB

IV*. DÉRIVÉS OXYGENÉS DU GERMANIUM: CYCLIQUES (OXA-1-GERMA-2-CYCLOPENTANES ET OXA-1-GERMA-2-CYCLOPENTENES) ET LINÉAIRES (MONOALCOXYTRIÉTHYLGERMANIUMS ET DI-ALCOXYDIÉTHYLGERMANIUMS)

ANNETTE MARCHAND (avec la collaboration technique de MARIE-HÉLÈNE SOULARD) Laboratoire de Chimie des Composés Organiques du Silicium et de l'Étain, associé au CNRS, Université de Bordeaux I, 351, cours de la Libération, 33 Talence (France)

MICHEL MASSOL, JACQUES BARRAU et JACQUES SATGÉ

Laboratoire de Chimie des Organominéraux, Université Paul Sabatier, 118, Route de Narbonne, 31 Toulouse (France)

(Reçu le 9 avril 1973)

SUMMARY

The IR and Raman spectra of four 1-oxa-2-germacyclopentanes, four 1-oxa-2-germacyclopentenes, two monoalkoxytriethylgermaniums, three dialkoxydiethyl-germaniums and hexaethyldigermoxane have been examined in the $3600-100 \text{ cm}^{-1}$ region. Assignments are discussed for the characteristic vibrations of these derivatives. Some specific bands of cyclic compounds of germanium are identified.

RÉSUMÉ

Les spectres IR et Raman de quatre oxa-1-germa-2-cyclopentanes, quatre oxa-1-germa-2-cyclopentènes, de deux monoalcoxytriéthylgermaniums, trois dialcoxydiéthylgermaniums et de l'hexaéthyldigermoxane ont été examinés dans la région 3600-100 cm⁻¹. Les attributions des vibrations caractéristiques ont été discutées et certaines bandes, spécifiques des dérivés germaniés cycliques, mises en évidence.

Dans le cadre des travaux réalisés^{1,2,3}, dans le domaine des propriétés physicochimiques de composés organométalliques, nous avons envisagé l'étude des spectres de vibrations de séries de dérivés oxygénés cycliques à cinq chaînons du silicium, du germanium et de l'étain.

^{*} Pour partie I voir réf 23, pour partie II voir réf 1, pour partie III voir réf 22

Dans ce premier article, nous examinerons les dérivés du germanium linéaires (monoalcoxytriéthylgermaniums et dialcoxydiéthylgermaniums) et cycliques (germaoxacyclopentanes et germaoxacyclopentènes).

Dans une deuxième publication, l'étude de composés isologues des précédents : oxa-1-sila-2-cyclopentanes et oxa-1-stanna-2-cyclopentanes et -cyclopentènes sera exposée.

Nous complèterons cet ensemble de résultats par la comparaison des fréquences de vibration caractéristiques des dérivés oxygénés à cinq chaînons (saturés ou non saturés) des éléments de la colonne IVB et la comparaison de leur basicité vis à vis du méthanol.

Nous présentons ici une analyse systématique des spectres de vibration infrarouges et Raman de composés oxygénés du germanium dont la liste est indiquée sur le Tableau 1.

La synthèse des dérivés germaniés linéaires ainsi que celle des cycliques I à VII a déjà fait l'objet de publications^{4,5}. Le dérivé VIII a été préparé par réaction d'échange entre le diméthyldichlorogermane et le dérivé stannique dibutylé isologue, dont la synthèse a été décrite par ailleurs^{6,7}.

Les spectres infrarouges de tous ces dérivés à l'état pur et en solution ont été enregistrés entre 4000 et 2600 cm⁻¹ et entre 1800 et 400 cm⁻¹ et les spectres Raman des liquides purs de 3600 à 100 cm^{-1} .

TABLEAU 1

LISTE DES DERIVES ETUDIES

Dérivés linéaires du germanium (Et₃Ge)₂O, Et₃GeOMe, Et₃GeO-n-C₈H₁₇ Et₂Ge(OMe)₂, Et₂Ge(OEt)₂, Et₂Ge(O-n-C₈H₁₇)₂

Dérivés cycliques du germanium

Tous les composés cycliques examinés possédant des groupes $Et_2Ge=$, 1 nous a paru nécessaire de préciser d'abord la position des vibrations caractéristiques des groupes éthyles liés au germanium en étudiant les dérivés oxygénés linéaires du Tableau 1. Des monoalcoxytrialkylgermaniums et des dialcoxydialkylgermaniums avaient déjà fait l'objet d'une étude antérieure^{1,8}, mais 1ls ne présentaient que des groupements méthyles ou butyles.

A DÉRIVÉS LINÉAIRES

I. Attributions des vibrations caractéristiques des groupes éthyles liés au germanium 1. Vibrations de valence des groupes éthyles

La région où se situent ces vibrations est particulièrement délicate à interpréter, car on attend entre 3000 et 2700 cm⁻¹ les vibrations de valence $v_a(CH_3)$, $v'_s(CH_3)$, $v_s(CH_3)$, $v_a(CH_2)$, $v_s(CH_2)$ et les harmoniques des vibrations de déformation $\delta(CH_2)$ et $\delta(CH_3)$. La présence de deux ou trois groupes éthyles liés au germanium n'entraîne pas plus de deux vibrations $v_s(CH_3)$ car le couplage des CH₃ n'a jamais été observé.

Nous attribuons les bandes moyennes de fréquences voisines de 2960 cm⁻¹ à l'ensemble des vibrations antisymétriques $v_a(CH_3)$ et $v_a(CH_2)$ par analogie avec les résultats de Mackay et Watt⁹ dans les éthylgermanes.

Les spectres Raman présentent deux ou trois bandes relativement fortes et polarisées qui pourraient correspondre aux vibrations symétriques $v_s(CH_3)$ et $v_s(CH_2)$. La plus intense située à $2903 \pm 3 \text{ cm}^{-1}$ dans les triéthylgermaniums et à $2907 \pm 6 \text{ cm}^{-1}$ dans les diéthylgermaniums peut être affectée à la vibration symétrique $v_s(CH_3)$. La seconde bande pointée à $2933 \pm 4 \text{ cm}^{-1}$ proviendrait de la vibration $v_s(CH_2)$ car elle est présente dans tous les dérivés et absente du dérivé VIII qui ne renferme aucun groupe CH_2 .

L'absorption à 2907 cm⁻¹ à laquelle correspond dans le digermoxane et le méthoxygermanium une bande Raman, pourrait avoir pour origine une vibration du CH₃ de l'autre extrémité de la molécule. Il ne nous semble pas possible de retenir la fréquence 2877 ± 5 cm⁻¹ pour la vibration $v_s(CH_3)$ comme le fait Mackay⁹, l'éclatement des deux niveaux $v_s(CH_3)$ ne pouvant être de 30 cm⁻¹. Cette dernière suite pourrait être affectée à une combinaison des déformations $\delta(CH_2)$ et $\delta'_s(CH_3)$.

2. Vibrations de déformation des groupes éthyles

Nous situons les vibrations de déformation δ_a et $\delta'_s(CH_3)$ à 1458 \pm 4 cm⁻¹, la vibration $\delta(CH_2)$ à 1424 \pm 3 cm⁻¹ et la vibration symétrique $\delta_s(CH_3)$ à 1382 \pm 5 cm⁻¹ en accord avec la plupart des auteurs^{3,10}.

La suite à 1226 ± 4 cm⁻¹ correspond à la vibration de "wagging" w(CH₂), en même temps, peut-être, qu'a une torsion du CH₂, comme l'indique Mackay⁹

3. Vibrations de balancement ou rocking des CH_3 et des CH_2

Les spectres des dérivés linéaires comportant le groupe Et_3Ge présentent tous un couple de bandes fortes 1021-1011 cm⁻¹ que nous attribuons à des rockings de CH₃ par analogie avec d'autres études^{1,3}. Si le dédoublement provenait d'une isomérie de rotation du groupe éthyle autour de la liaison Ge-C²⁴, on devrait également l'observer dans les diéthylgermaniums, ce qui n'est pas le cas. Nous faisons cor-

TABLEAU 2

FREQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES DES DERIVES LINEAIRES ETHYLES DU GERMANIUM⁴

	$(C_2H_5)_3Get$	0Ge (C ₂ H ₅) ₃	$(C_2H_5)_3Ge$	осн ₃	$(C_2H_5)_3Get$	$0-n-C_8H_{17}$	$(C_2H_3)_2Ge($	0CH ₃) ₂	$(C_2H_5)_2Ge($	0C ₂ H ₅) ₂	$(C_2H_5)_2Ge($	$0-n-C_8H_{1,7})_2$
	IR	R	IR	R	IR	R	IR	R	IR	R	IR	R
v.(CH.) et v.(CH.)	2985 FF	2950 f	*2959 F	e2951 f			2950 m	2956 m	2955 m	2964 f 2936 f	2966 mF	2958 f
v.(CH ₃) éthyle	2941 F	2929 mfP		2931 m		2930 m	2928 m	2934 FP	2927 m	2933 mP	2932 F	2933 mP
	{ 2907 mF	2909 mf	*e2907 mf	e2912 m	*2907 F					2917 mP	e2914	2912 mP
v _s (CH ₃)	~	2900 FFP		2899 FP		2906 FFP	2907 m	2913 FP	2898 m	2903 FFP		2901 FFP
$\delta(CH_2) + \delta'(CH_3)^{\gamma}$	e2874	2872 mP	*e2882 mF	2874 mP		2873 m	2878 mf	2878 mFP		2877 mP	2882 F	2874 mP
i					*2857 F	2859 m			2867 mf	2865 fP	2861 F	
		2824 ff	*2809 mf				2816 m	2816 FP	2851 m			2850 mP
									1493 f		1467 m	
					1468 m	1461 F	1467 f		1467 f	1460 mP	1460 m	1459 m
δ _a et δ'(CH ₃)	1462 F	1459 m	*1462 mf	1461 m	1462 m		1460 mf	1462 FF	1459 m			
i .			*e1451			1441 mF	1446 f		1425 f			1434 m
$\delta(CH_2)$ éthyle	1427 F	1423 mf	*1427 f	1424 mf	1422 mf		1424 f	1424 m	1421 f	1423 f	1424 f	
δ _s (CH ₃)	1379 m	1379 f	*1381 f		1378 m	1379 f	1382 f	1381 f	1385 m	1383 f	1384 m	
						1345 ff			1361 f		1378 m	
	1297 mf				1300 ff	1302 m						
•										1279 mf	1302 f	1301 mf
$\omega(\mathrm{CH_2})$ et t(CH ₂)	1223 m	1223 mP	1227 f	1223 mP?	1226 f	1225 FP	1226 f	1229 FFP	1227 f	1231 mP	1229 f	1231 f
1 10/-			1125 6				1176 f	1160 F	1158 f			1225 f
1(11)1			1119 ff 1115 ff		1120 f	1124 mf	10/11	1 6011	1 0/11		1120 mf	1123 f
					e1083		1093 f		1097 mF	1102 fP		
v(C-O) et r(CH ₃)			1062 F		1072 F	1076 mf	{ 1062 F		∫ 1066 F	1069 f	{ 1069 F	1075 f
					e1061 m		l 1053 F	1051 m	(1059 F		(1049 F	
r(CH ₃)	1021 F	1015 mf	1021 m	1025 mfP	1022 m	1019 mP						
r(CH ₃)	1010 mF		1012 m	1012 mfP	1010 田		1016 mF	1014 FP	1017 m	1017 f	1015 mF 996 m	1022 f 993 f

v(C-C)	968 m	977 mf	970 f	972 mfP	968 mf 960 mf	971 m	J 696	968 F	J 696	970 f	964 m 961 m	968 f 961 f
	948 m		951 ff				955 f		953 f			
					902 f	892 fTP		907 f	910 m		902 mf	895 f 890 f
						874 fTP	868 ff	877 ff				871 f
							846 f	849 ff			848 f	856 f
۲ <mark>ء</mark> (GeOGe)	853 F	835 f	†859 f		†855 m	500		000			J F L O	3 200
	c846		844 II			268 ff		820 m			770 f	1/79
					719 m						721 f	
			700 mF									
r(CH ₂)Ge	695 F		695 mF		697 F		696 m	8	е96 m		695 mF	
			e011				680 m	678 II	681 m		082 mF	
	668 mF 661 mF		e674									
	646 mF		e664		6571	652 fP			(654 m	654 fP	(659 m	654 fP
v(C,GeO,)							609 F	603 mf	(603 m	601 f	{ 602 mF	606 f
v(C ₃ GeO)	585 FF	580 m	590 FF	586 m	589 F	581 mf			,			
v _s (C ₂ GeO ₂)							561 f	552 FFP	560 f	559 FFP	561 f	559 FFP
v _s (C ₃ GeO)	539 mF	550FFP	e539 f	537 FFP	540 f	543 FP						
		478 ff					500 ff	495 f				
	457 m	e457 fP	458 f					465f				
			446 f	438 f				428 mf				
v,(GeOGe)	440 m	437 fP						405 mf				
, i								391 f				
								331 f				
		282 f				286 f		284 m				
								249 f				
								226 f				
^{<i>a</i>} $_{V}$ en cm ⁻¹ ; FF = tr	ès fort; F=fo	ort, mF = mo	yennement fo	ort; m = moyer	n; mf=moye	nnement faible	e, f=faible,	ff=très faible	e, P=polaris	ée; l=large,e	= épaulemen	. Vibrations
$v = valence \beta, \delta, \gamma = v$	déformations	, r = rocking,	w = wagging	Les valeurs pr	écédées de *	correspondent	t au liquide j	our, de † à ur	ie impureté			

respondre l'absorption moyenne 969 ± 1 cm⁻¹ à la vibration de valence ν (C-C) comme dans des études antérieures et à l'inverse de Mackay⁹ qui affecte à ν (C-C) et r(CH₃) respectivement les deux absorptions moyennes 1024 et 979 cm⁻¹ dans des éthylgermanes.

Sur les spectres des dialcoxydiéthylgermaniums, on n'observe plus que deux bandes dans la région ci-dessus à 1016 ± 1 et 967 ± 2 cm⁻¹. Cette dernière correspond à la vibration ν (C–C) comme dans les triéthylgermaniums. L'autre absorption proviendrait des rockings des CH₃ puisqu'elle se situe à une fréquence intermédiaire entre les deux valeurs retenues pour de telles vibrations.

Pour tous les dérivés linéaires étudiés, la forte absorption à $696 \pm 1 \text{ cm}^{-1}$ est attribuée au rocking du CH₂ lié au germanium comme dans les composés butylés¹.

II. Attributions des vibrations caractéristiques des monoalcoxy- et des dialcoxygermaniums

1. Monoalcoxygermaniums

Nous observons, dans cette série de composés, les mêmes vibrations caractéristiques que dans les dérivés méthylés et butylés¹ Dans le méthoxy- et l'octoxytriéthylgermaniums, la vibration v(C-O) est attribuée à l'intense absorption observée respectivement à 1062 et 1072 cm⁻¹. Sa fréquence est abaissée d'une dizaine de cm⁻¹ quand on utilise un solvant polaire (HCCl₃) au lieu d'un solvant inerte (CS₂) (Tableau 3).

Les vibrations de valence $v(\text{GeC}_3)$ sont attendues dans la même région que v(GeO). Un calcul a montré¹ qu'en raison des masses et des constantes de force, le système $\stackrel{C}{\underset{C}{\overset{}}}$ peut être considéré comme un groupe tétraédrique donnant lieu aux vibrations symétrique A_1 et triplement dégénérée F_2 . Si la molécule conserve un axe ternaire, on observera deux vibrations A_1 et une vibration doublement dégénérée E. Si elle perd cet axe de symétrie, on pourra avoir trois vibrations A' et une vibration A''.

TABLEAU 3

	Solution dans CS_2 "	Solution dans HCCl ₃ ª
(C ₂ H ₃) ₃ GeOCH ₃	1062	1052
$(C_2H_5)_3$ GeO-n- C_8H_{17}	1072	1063
$(C_2H_5)_2$ Ge $(OCH_3)_2$	1062	1054
	1053	1042
$(C_2H_5)_2$ Ge $(OC_2H_5)_2$	1066	1063
	1059	1054
$(C_{2}H_{3})_{2}Ge(O-n-C_{8}H_{12})_{2}$	1069	1063
	1049	1045

INFLUENCE D'UN SOLVANT DONNEUR DE PROTON SUR LA FREQUENCE DE LA VIBRATION ν (C-O) DANS DES MONOALCOXYTRIETHYLGERMANIUMS ET DES DIALCOXYDIETHYLGERMANIUMS

^{*a*} v en cm⁻¹

Dans les monoalcoxytriéthylgermaniums, la bande Raman très forte et polarisée 540 ± 3 cm⁻¹ est attribuée à la vibration symétrique A_1 (v_s (C₃GeO))

L'intense absorption à 589 cm⁻¹ et la bande Raman à 583 \pm 3 cm⁻¹, proviendraient de la levée de dégénérescence de la vibration F_2 .

Sur les spectres de l'hexaéthylgermoxane, les bandes Raman polarisées à 550 et 437 cm⁻¹ correspondent respectivement aux vibrations $v_s(C_3Ge)$ et $v_s(GeOGe)$ Les absorptions à 585 et 646 cm⁻¹, analogues aux bandes 581 et 653 cm⁻¹ de l'hexabutylgermoxane¹, seraient peut-être dues à un couplage entre les mouvements v_a et $v'_s(C_3Ge)$ et des vibrations de balancement du groupement CH₂

2. Dialcoxygermaniums

Dans les dialcoxydiéthylgermaniums, nous relevons deux bandes fortes respectivement à 1062–1053 pour le diméthoxy, 1066–1059 pour le diéthoxy- et 1069–1049 cm⁻¹ pour le dioctoxygermanium. Comme ces absorptions sont sensibles à un effet de solvant polaire (abaissement simultané des deux fréquences de 3 à 11 cm⁻¹ comme le montre le Tableau 3), on peut penser qu'elles proviennent de la vibration v(C-O), en même temps que d'une autre vibration, probablement un rocking du CH₃ des substituants attendu dans cette région. Nous retrouvons ici le même doublet intense déjà observé dans les dialcoxydiméthyl- ou dibutylgermaniums¹.

Pour le système $\underset{O}{C} Ge \underset{O}{\sim} O$, nous observons une bande Raman intense et polarisée à 553 ± 4 cm⁻¹ correspondant à la vibration symétrique A_1 ($v_s(C_2GeO_2)$). La forte absorption à 606 ± 4 cm⁻¹ présente sur tous les spectres et les deux bandes moyennes à 657 ± 3 (IR) et 654 cm⁻¹ (R) pointées pour deux des composés proviendraient de la levée de dégénérescence de la vibration triplement dégénérée F_2 du groupe tétraédrique

B DÉRIVÉS CYCLIQUES

I. Attribution des vibrations caractéristiques des groupes éthyles liés au germanium

Les attributions proposées pour les groupes Et_2Ge dans l'étude des dérivés linéaires ont été reportées pour les dérivés cycliques comme le montre le Tableau 4 En effet, entre 2980 et 2820 cm⁻¹, les spectres de ces derniers indiquent les mêmes fréquences infrarouges et Raman avec des intensités comparables.

Nous retiendrons donc pour les vibrations de valence $v(CH_3)$ et $v(CH_2)$ les suites de bandes 2957 ± 5 , 2928 ± 2 , 2911 ± 2 cm⁻¹, les autres bandes correspondant à des harmoniques ou des combinaisons des vibrations de déformation des CH₃ ou des CH₂. Comme on ne note aucune autre bande supplémentaire sur les spectres des dérivés I à IV, par rapport à ceux des dialcoxydiéthylgermaniums, il ne semble pas que les vibrations propres au cycle et à leurs substituants perturbent sensiblement cette région spectrale.

Les vibrations de déformation ont été situées à 1461 ± 2 pour $\delta_a(CH_3)$, 1422 pour $\delta(CH_2)$, 1377 ± 4 pour $\delta_s(CH_3)$, 1227 ± 1 pour $\omega(CH_2)$, 1022 ± 3 et 1012 ± 2 pour $r(CH_3)$, 965 ± 5 pour v(C-C) et 685 ± 6 cm⁻¹ pour $r(CH_2)$. (voir Tableau 4).

II. Attribution des vibrations caractéristiques des hétérocycles oxygenés germaniés 1. Oxagermacyclopentanes (I à IV)

(a) Vibrations de squelette et vibrations des méthylènes du cycle. La comparai-

4	
р	
<	
-	
A	
₹	

FREQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES DES OXA-1 GERMA-2-CYCLOPENTANES (Cf légende Tableau 2)

				CH3				CH3	
	(C ₂ H ₅) ₂ Ge [/]	$\widehat{}$	(C ₂ H ₅) ₂ Ge [/]	$\sum_{i=1}^{n}$	(C ₂ H ₅) ₂ Ge	CH ₃	(C2H5)2Ge	CH3	
- 1		E		Ĵ		(II)		(A)	
	IR sol	R sol	IR sol.	R pur	IR sol.	R pur	IR sol	R pur	
1	2951 F	e2959 m	2954 F	2954 m	2957 F	2963 m	2954 F	2959 m	
	2926 F	2935 FP	2928 m	2931 FP	2926 F	2931 FFP	2926 m	2928 FFP	
	2903 F	2914 FFP	2902 mF	2910 FFP	2913 mF	2913 FFP	2905 m	2910 FFP	
	2872 m	2877 mFP	2873 mF	2876 FP	2872 m 2842 f	2875 mF	2870 F	2873 FFP	
	2825 m	2834 m 2738 f	2815 m	2824 mfP 2738 f	2826 f	2828 f 2734 f 1505 f	2816 f		
		†1650 f 1583 f		†1652 f		1000 1 1649 [1583 f		†1650 f	
		1476 mf	1470 f						
	{ 1463 mF	1455 m	1460 m	1463 mF	1460 m	1459 FF	1461 m	1462 m	
	(1458 mF		1455 m		1456 m		1454 m		
					1443 mf	1449 FF			
	1444 m	1445 f	1427 mf		c1438				
	1422 m	1417 mf	1422 mf	1424 m	1422 mf	1422 F	1422 f	1422 f	
	1413 m		1409 f		1413 f		1412 f		
	∫1377 mf	1376 f	1373 mf	1376 f	1376 m	1379 f	1376 m	1377 f	
	~				1370 m		1372 m		
	,		1352 ff				1347 f		
	1348 mf	1350 f	1344 ff		1351 f	1353 f	1343 f	1348 f	
			1326 mf	1328 f	1331 mf	1334 f	1332 f	1332 f	
	1311 f						1318 f		
				1301 mf		1298 f	1293 f	1302 f	
			1273 ff	1275 f	1257 f		1275 f		
		e 1238 mf	1243 f	e1246 f	1236 mf	1238 FF			

182

C	OMF	209	SÉS	O	RG	A	110	วุบ	ES	5 E	DE	LA	4 (co	L	ON	NE	ΞI	VE	3 1	V													13	83
1224 mP?	1171 mf	3 5511	IIII 6611		1055 f		1016 mf			970 mf			921 f	914 f		878 f			829 f	806 f		766 f	755 f			681 mFP	654 m			e584 mF			560 FFP	531 mF	(A suivre)
1227 mf 1185 f	1168 f	1163 f	1108 m	1091 mf	1051 mF	1062 F	1019 m	1010 mF	e996	971 mF	961 mF		922 F	915 mF	890 m	879 mF				806 ff	780 ff	766 f	751 m		687 m	678 F	651 m	634 m	634 m	586 m	576 m		559 m	530 m	
1225FFP	1173 f	1142	1118 f		1065 f	1052 f	1019 mfP			974 mf				911 f	893 f				830 mf	798 f	773 ff		746 fP	716 f		677 mP	e662mP		613 mF	583 F			e557 FFP		
1227 e 1189 f	1172 mf	1102 I 1141 mf	1116 f	1098 mf	1069 F	1048 FF	1020 mF	1010 mF	1001 m	980 f	963 mf	956 m		909 F	890 m	3 69 f	858 f	838 f	830 m	800 f		764 f	748 m		687 F	678 F	654 m	625 f	613 m	586 m		568 mf	558 mf		
1227 mP	1176 mf		1126 m		1056 f		1023 mfP			973 mf	955 f			917 f	884 f				831 mF	799 f		758 f					664 mfP	648 f	625 m	e590 F			562 FFP		
1228 f 1179 f	1171 f	1134 f	1119 mf	1111 mf	1052 F	1033 FF	1023 F	1011 F	997 mF	079 m	962 m	946 mf		918 f	894 f				827 mf	795 f		762 mF		e704 m	691 mF		658 mF	641 mF	621 F	588 mF			560 m	e551 mf	
1224 mP ⁹	3 6 7 1 1	17011	1122 f			1030 m	1019 m		994 m		971 mf			917 f		873 mFP	863 f		831 m									645 FP		586 F			559 FFP		
{ 1226 ff	1150 F	1 4011	1119 mf			1033 FF		1014 F	991 F		970 m				_	871 m	858 m		e845 ff			757 m	1	e704	{ 687 F	(673 mF		639 FF	600 F	589 mF			558 f		
$\overline{\omega}(CH_2)$ éthyle et γ (CH) cycle	r(CH ₃) R(CH-) cycle		$\beta(\mathrm{CH}_2)$ cycle		ĺ	v(C-0)	r(CH ₃) éthyle	r(CH ₃) éthyle	cycle	r(CH ₃)	v(C-C) éthyle			v(C-C) cycle								r(CH ₂) cycle			r(CH ₂) éthyle			y(CCC) cycle	v(C ₃ GeO)	$\gamma(CCC)$ cycle			v"(C3GeO)		

(Suite)	
4	
TABLEAU	

				EH3				CH3
	(C ₂ H ₅) ₂ 6		(C ₂ H5)2G		(C ₂ H ₅) ₂ G	CH3	(C2H5)2G	e CH3
		(I)		Ĵ		Ê		(凶)
	IR sol	R sol	IR sol	R pur	IR sol	R pur	IR sol	R pur
(chaine)?	516 m	518 mf	512 m	516 m	502 f	505 f		ç
		454 f			465 mf	466 mf	4881	489 m 482 m
		438 mf		436 f		433 f		
		367 m		422 I 380 f		385 fP		
		339 f		340 m 220 m		350 FP		339 mfP
		278 f		272 mf		274 m		281 m
		253 f 242 f		254 f				262 mFP
		230 f		233 f		~ 230 f		
t(CH ₃) ⁷		2161 187 m		214 f 185 m		179 m		183 m

.

A MARCHAND, M MASSOL, J BARRAU, J SATGÉ

184

son des spectres des dérivés (I à IV) avec ceux des dialcoxydiéthylgermaniums fait ressortir la présence des bandes 1346, 1161, 1114, 996 et 761 cm⁻¹ dans les dérivés cycliques. La suite à 1346 ± 4 cm⁻¹ est attribuée aux vibrations "wagging" de CH₂ par analogie avec les résultats de la cyclopentanone¹¹ et du cyclopentanol¹². Nous retenons les bandes 1162 ± 2 , 1114 ± 6 et 996 ± 5 cm⁻¹ pour des vibrations du cycle sans pouvoir préciser s'il s'agit de vibrations de déformations des groupes méthylènes ou des vibrations du squelette cyclopentanique.

La suite à 761 ± 5 cm⁻¹ pourrait être affectée à un balancement des CH₂ comme dans les halogénocyclopentanes¹³.

Les autres vibrations du cycle v(C-C) et $\gamma(CCC)$ sont assez difficiles à identifier car, en général, elles ne sont pas pures. Dans les halogénocyclopentanes¹³, trois vibrations v(C-C), à peu près pures, ont été situées autour de 900 cm⁻¹. Elles sont peu perturbées par l'introduction d'un halogène sur le cycle. Il est possible que les faibles bandes pointées à 913±4 et 895±4 cm⁻¹ correspondent à de tels modes.

Par contre, les vibrations de déformation du cycle γ (CCC), très couplées, sont perturbées par la présence d'un halogène. On doit donc s'attendre à les trouver à des fréquences très différentes de celles du cyclopentane dans des composés germaniés. Les suites à 633 ± 8 et 588 ± 2 cm⁻¹ observées pour I à IV, absentes des spectres des dialcoxydiéthylgermaniums, pourraient provenir des déformations de la chaîne par analogie avec le tétrahydrofuranne^{14,17a}.

Remarquons que la plupart des bandes que nous venons de désigner comme caractéristiques d'un oxagermacyclopentane se trouvent également sur les spectres des diméthyl- et dibutylgermadioxacyclopentanes déjà étudiés par l'un d'entre nous, en particulier, les bandes 1355, 1112, 964, 907, 892, 750, 635 et 587 cm⁻¹ dans le composé dibutylé¹.

(b) Vibrations de balancement des groupes CH. La suite à $1329 \pm 3 \text{ cm}^{-1}$, absente du spectre du dérivé I, est attribuée à une vibration de balancement de CH, par analogie avec les halogénocyclopentanes¹³. L'autre balancement est situé dans ces derniers vers 1220 cm⁻¹. Il est très couplé avec des balancements des CH₂ et des vibrations du cycle v(C-C). Il est possible qu'il en soit de même ici pour la bande 1227 cm⁻¹.

(c) Vibrations de valence v(C-O). Par analogie avec d'autres dérivés alcoxylés métalliques étudiés précédemment^{1,3,15,16}, nous attendons pour l'élongation v(C-O), dans un dérivé cyclique, une intense absorption proche de celle de la vibration v(C-O) observée dans des dérivés dialcoxylés du même métal.

Pour les dérivés I et II, les absorptions intenses à 1033 cm⁻¹ sont attribuées à v(C-O) car leur fréquence est sensible à un solvant donneur de protons comme le montre le Tableau 6.

Pour les dérivés III et IV, deux bandes d'intensité assez semblables, sont sensibles à un effet de solvant polaire. Nous pensons que la vibration v(C-O) se couple avec la vibration v(C-C) du méthyle fixé sur le cycle. Ces vibrations ayant un atome de carbone commun, donneraient lieu aux deux absorptions observées sans qu'il soit possible de les différencier^{17b}.

Ces valeurs sont à rapprocher de celles obtenues pour les diméthyl- et dibutylgermadioxacyclopentanes¹, pour lesquels la très forte bande relevée à 1041 cm⁻¹ était affectée à ν (C-O). Notons que ces derniers étaient des dimères^{1,8,18}, alors que

Ś	
TABLEAU	

FREQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES DES OXA-I-GERMA-2-CYCLOPENTENES (Cf légende Tableau 2)

	(C2H5)2Ge		(C ₂ H ₅) ₂ Ge	CH3	(C ₂ H ₅) ₂ Ge	CH ₃	(CH ₃) ₂ Ge	CH3
) (X)) (II)	0	, 6		
	IR	R	IR	R	IR	R	IR	R
		3096 f						
"(=('H')	3M7 f	3083 f 3053 mf	3050 f	3056.5	1 9000	3 1301	3 0100	
	1 900C	3003 mf	10000	2000 mf			17406	3 1000
v.(CH.) et v.(CH.)	2952 F	2955 mf	2963 FF	2954	2963 F	2971 m	2058 F	3001 I 2073 f
v _s (CH ₂) éthyle	2930 F	2931 mFP	2930 F	2931 mFP	2926 mF	2932 FP		
v,(CH3)	2905 F	2914 mFP	2907 mF	2918 mFP	2904 mF	2912 FP	2914 m	2915 mP
$\delta'_{\rm s}({\rm CH}_3) + \delta({\rm CH}_2)^{\gamma}$	2872 F	2875 mP	2873 mF	2875 mP	2871 m	2877 mFP		
					2855 e	2859 f	2858 f	
2δ (CH ₂) éthyle	2825 F	2831 mP	2833 m	2825 ff		2824 f		
		2736 f	2734 f	2739 f		2738 f		
						2699 ff		
		1738 f				1650 ff		
		1646 mf	1616 f					1623 f
			1610 f	1613 m		1605 f		
			1596 f		1574 f		1582 m	
v (C=C)	1571 m	1575 mP ⁹	1564 mf	1570 m	1565 m	1564 FP	1567 f	1568 m
							1515 f	
							1490 m	
δ_{a} et δ'_{s} (CH ₃)	1461 m	1454 mF	1456 mF	1458 mF	1459 m	1459 mF	1460 m	1455 m
	1455 m		e]44]		e1454			
					1433 f	1436 m	1413 f	
$\delta(CH_2)$ éthyle	1422 mf	1424 mf	1420 mf	1420 mf	1422 mf	1422 mf		
							1406 f	
δ _s (CH ₃) éthyle	1380 mf	1370 mf	1379 mf	1378 mf	1379 mf	1379 f	1377 f	
			1367 m	1372 mf	1372 m	1373 f		

186

δ _s (CH ₃)c			1363 m		1354 mE	1366 F	1372 mf 1367 m	1330 ff
ā (CH ₃) cycle	1342 f	1343 mf				1 0001	III 1001	11 0001
	1294 mf	1290 f	1318 m e1312	1317 m	1304 mF	1304 f	1304 m	1304 f
δ _s (CH ₃)Ge			J 1201				1237 m	1243 f
$\omega({ m CH_2})$ éthyle	1228 f 1213 f	1222 m 1216 m	1227 f	1226 FP	1226 f 1209 mf	1224 FP	1310 P	1 7 1 8 f
r(CH ₃) r(CH ₃)			1180 f	1174 m	1187 F 1173 m	1188 mf 1175 m	1174 m	1178 f
$\beta(\mathrm{CH_2})$ cycle		1164 f	1141 mF	1139 m				1163 f
$\beta(\mathrm{CH_2})$ cycle	1115 F	1111 mf	1097 f	1099 mf				
		1087 f 1071 f	1076 f	1078 mf				
		1060 f 1046 f	1058 f	1062 m	1060 m	1063 mF	1060 m	1058 m
r(CH ₃) éthyle	1019FF		1025FF	1025 mF	1023 mf	1028 mf	1 270	3 0 7 0
	JJ GINI		JJ (701		96/ FF 959 F	961 mF	J (06	1 006
r(CH ₃) éthyle	1010 F	1012 mP	e1012 mF		1012 mf 966 f	1014 m		
v(C-C) éthyle et r(CH.)	962 f 944 ff	964 f	971 m	971 m	967 FF 959 FF	968 mF 961 mF		
			922 F	924 f		917 m	921 f	915 f
v(C-C) cycle	897 f	898 mf		884 fT	894 F	893 mf	895 F	896 f
r(CH ₃)Ge			863 m				833 mf	
сол ло,-		823 f	824 m	829 m		828 f	1010	
$r(CH_2)$ cycle?	770 F		767 mE	750 f	801 m	802 mf	J 610	
r(CH ₃)Ge			1111 70/	1 601			772 F	
			748 m	745 f 721 m	730 E	73 O CT	171 E	20102
v(CCCH ₃)?			705 FF	706 m	708 F	711 fP	700 F	II 17/

COMPOSÉS ORGANIQUES DE LA COLONNE IVB IV

187

(À suivre)

(Suite)	
Ś	
TABLEAU	

	(C ₂ H ₅) ₂ Ge	\bigcap	(C2H5)2Ge	CH3	(C ₂ H ₅) ₅ Ge	CH ₃	(CH ₃) ₂ Ge	CH ₃
		(五)		(五)	0	Î	Ð	Î
	IR	R	IR	R	IR	R	IR	R
r(CH ₂) éthyle	684 m 687 m c	Q - 377	680 F	<u>д</u> ш у <u>г</u> у	679 m	401 ED	1 (BY	68.1 mD
r(CH,) cycle	00/ mF 649 mF	J III C00		0/0 IIIL	60/0	101 LL	1 700	1111 +000
v(C.GeO)	588 m		e604 m 585 mF	581 F	586 m	e587 mf	613 mF	611 m
(martin)	1							565 f
$\gamma(CCC)$	568 m				575 m			
v,(C,GéO)	559 mF	561 FP	564 m	561 FFP	567 m	569 FP	590 m	590 FP
• •				548 F	547 m	550 mP	552 f	554 f
			504 f		501 f	504 mP		
			4891					
γ (CCH)		393 f		402 f	408 mF	408 mP		407 m
				371 mf	374 f	372 f		402 f
				360 mfP	320 f			335 mf
				314 mf	296 f	298 mP		293 f
				288 mP		282 m		269 f
				260 f		256 m		261 f
								246 f
				233 f				233 f
								196 mF
				215 f				182 mF
								172 m
								160 f
						143 F		132 f
								115 f

A MARCHAND, M MASSOL, J BARRAU, J. SATGÉ

TABLEAU 6

Composés	Solution dans CS ₂	Solution dans HCCl ₃	Composés	Solution dans CS ₂	Solution dans HCCl ₃ ou dans HCBr ₃
I	1033	1029	v	1019	1015
	991	987 5			
II	1033	1023	VI	1025	1024
III	1048	1046	VII	967	966
	909	907		959	955
IV	1062	1060	VIII	965	960
	922	920			

INFLUENCE D'UN SOLVANT DONNEUR DE PROTON SUR LA FREQUENCE DE LA VIBRATION $\nu(C-O)$ DANS DES OXAGERMACYCLOPENTANES ET DES OXAGERMACYCLOPENTENES⁴

^{*a*}v en cm⁻¹.

les composés monooxygénés II à IV, se sont révélés monomères², à température ordinaire.

Cependant, le spectre infrarouge du liquide I pur, recueilli à la sortie de la colonne de distillation, présente une forte bande à 1072 cm^{-1} , absorption qui disparaît complètement dès que le composé I est mis en solution dans le tétrachlorure de carbone. Toutefois, cette bande réapparaît sous forme d'un épaulement de la forte absorption à 1033 cm^{-1} présente dans tous les cas, quand on considère une solution de I dans du sulfure de carbone.

Nous pensons que la transformation de monomère en dimère se fait par liaison de coordination suivant le schéma en accord avec des travaux récents¹⁸:

Par dilution ou par effet thermique, on isole le monomère. C'est pourquoi nous donnons sur le Tableau 4 les spectres infrarouges et Raman de solutions du dérivé I. Par contre, dans les dérivés II à IV, l'effet stérique des substituants du cycle empêche la dimérisation¹⁸.

Notons que, pour I, une deuxième bande à 991 cm⁻¹ est déplacée à 987 5 cm⁻¹ en présence de bromoforme et son intensité est augmentée. Il ne peut s'agir d'une bande associée car elle devrait disparaître dans un solvant polaire. Nous verrons¹⁹ qu'il en sera de même dans le cas du dérivé stannique isologue et qu'un couplage doit se produire entre la vibration v(C-O) et une vibration v(C-C) du cycle

Ces résultats sont compatibles avec les attributions proposées² précédemment

pour v(C-O) mais diffèrent en ce qui concerne une faible suite observée à 1060 (I, II et IV) et 1062 cm⁻¹ (III) et affectée à v_a (GeOC). Dans ces composés, on ne doit pas attendre un tel mode de vibration mais une vibration v(C-O) et les vibrations du système tétraédrique C₃GeO comme on l'a montré par le calcul pour les dialcoxy-dialkylgermaniums¹.

(d) Vibrations de valence du groupe
$$\overset{O}{\underset{C}{\subset}}$$
 Ge $\overset{C}{\underset{C}{\leftarrow}}$ Nous attribuons l'intense bande

Raman polarisée à 560 ± 3 cm⁻¹ à la vibration symétrique A_1 du groupe C₃GeO.

Les trois autres modes de vibration se trouveront à des fréquences très proches dont l'écart sera plus ou moins grand suivant le degré de levée de dégénérescence de la vibration F_2 Les bandes à 600 dans (I), 621 et 664 dans (II), 613 et 662 dans (III) et 634 cm⁻¹ dans (IV) pourraient correspondre à cette description.

2-Oxagermacyclopentènes (V, VI, VII et VIII)

(a) Vibrations de squelette et vibrations des méthylènes du cycle. Comme seul le dérivé V contient un groupe CH₂ dans le cycle, on peut donc s'attendre à observer quelques bandes souvent faibles, caractéristiques de ce groupement, qui n'apparaîtront pas sur les spectres des autres dérivés cyclopentèniques. Ce sont les bandes 1342 cm⁻¹ attribuées à des "wagging" w(CH₂), 1164 et 1115 cm⁻¹ à des déformations¹³ des CH₂. Les absorptions à 896 \pm 3 cm⁻¹ auxquelles correspond toujours une bande Raman pourraient provenir d'une vibration ν (CCC), la déformation γ (CCC) se situerait vers 570 cm⁻¹ et la déformation γ (CCH) à 401 \pm 8 cm⁻¹, en accord avec Sverdlov²⁰.

(b) Vibrations caractéristiques d'un cyclopentène germanié. La suite de bandes à $3047 \pm 5 \text{ cm}^{-1}$ correspond à la vibration de valence v (=CH) et celle à $1570 \pm 6 \text{ cm}^{-1}$ à la vibration de valence v (C=C).

Ces valeurs sont à rapprocher de celles d'autres auteurs²¹, qui situent v(C=C)d'un sila-1-cyclopentène-2 à 1560 cm⁻¹ et celle d'un sila-1-cyclopentène-3 à 1610 cm⁻¹.

La position en α de l'atome métallique par rapport à la double liaison explique l'abaissement de fréquence observé sur la vibration ν (C=C).

(c) Vibrations de valence v(C-O). Pour le dérivé V, nous attribuons à v(C-O), l'absorption intense pointée dans CCl_4 à 1019 cm⁻¹ dont la fréquence s'abaisse de 4 cm⁻¹ quand on emploie du bromoforme (Tableau 6). Nous affectons dans VI la forte bande 1025 cm⁻¹ à v(C-O) en même temps qu'à un rocking du CH₃ lié à l'éthyle. L'effet de solvant n'est alors que de 1 cm⁻¹, les fréquences de ces deux vibrations étant soumises à des déplacements en sens inverse.

Pour le dérivé VII, les deux maxima observés dans CCl_4 , à 967 et 959 cm⁻¹, se situent dans $HCBr_3$ à 966 et 955 cm⁻¹ en présentant un balancement d'intensité. Nous pensons qu'il s'agit là d'une résonance de Fermi entre la vibration ν (C-O) et une vibration ν (C-C).

Dans le dérivé VIII, on ne note plus qu'une seule bande forte à 965 cm⁻¹ correspondant à v(C-O) puisqu'elle est sensible à un effet de solvant polaire.

On peut remarquer sur le Tableau 6 la variation de fréquence importante que subit le vibrateur (C-O) quand on passe des dérivés V et VI aux dérivés VII et VIII. Nous avons déjà noté¹ l'influence des masses et des effets électroniques des substituants R sur la vibration v(C-O) d'une groupement MOR, (M = C, Si, Ge, Sn). (d) Vibrations de valence du groupe $\stackrel{O}{\underset{C}{\to}} Ge \stackrel{C}{\underset{C}{\leftarrow}} C$ Comme dans les germaoxacyclo-

pentanes, nous attribuons à la vibration symétrique A_1 du groupe, la bande Raman intense et polarisée située à 561 pour V et VI, 569 pour VII et 590 cm⁻¹ pour VIII. On sait¹, en effet, que sa position est différente suivant que l'atome de germanium est lié à des méthyles, des éthyles ou des butyles : environ 590, 560 et 580 cm⁻¹ respectivement.

Pour les autres vibrations, la levée de dégénérescence donne plusieurs bandes dont le maximum se situe à 588 et 665 pour V, 585 et 676 pour VI, 587 et 681 pour VII, 613 et 684 cm⁻¹ pour VIII. Ces valeurs de VIII sont en accord avec celles obtenues pour les dialcoxydiméthylgermaniums¹.

III. Attributions des vibrations propres aux substituants du cycle

La comparaison des spectres des dérivés (II à IV) avec celui du dérivé (I) met en évidence la présence de bandes dues aux vibrations des groupes méthyles. Les suites à 1184 \pm 5 et 1171 \pm 2 cm⁻¹ correspondraient à des "rocking" de CH₃ comme dans d'autres dérivés²². Celle à 978 \pm 2 cm⁻¹ proviendrait soit de r(CH₃), soit de v(C-CH₃).

Dans les cyclopentènes, les spectres des dérivés VI, VII et VIII présentent une suite à 1173 cm⁻¹ attribuable à un rocking du CH₃ et absente des spectres du composé V II en est de même pour les bandes à 1372 cm⁻¹ (δ_s (CH₃)). L'autre vibration r(CH₃) se situe à 1187 cm⁻¹ dans VI et VIII.

Les résultats que nous venons d'exposer concernant les oxa-1-germa-2-cyclopentanes et -cyclopentènes seront comparés avec ceux de leurs isologues siliciés et stanniques dans une publication ultérieure¹⁹.

PARTIE EXPÉRIMENTALE

I. Origine des composés étudiés

Tétraméthyl-2,2,5,5 oxa-l-germa-2-cyclopentène-3 (D). Ce dérivé a été obtenu selon les réactions suivantes:

À 4.80 g (0.0151 mole) de dibutyl-2,2 diméthyl-5,5 oxa-1-stanna-2-cyclopentène-3 (C) sont ajoutés goutte à goutte 2.10 g de diméthyldichlorogermane (0.0121 mole). On note une réaction très exothermique ; par distillation sous pression réduite, le dibutylchlorostannyl-1 diméthylchlorogermoxy-3 méthyl-3 butène-1 est isolé avec un rendement de 90%. (n-Bu₂(Cl)SnCH=CHC(CH₃)₂OGe(Cl)Me₂: Eb_{0 04}, 124°C; n_D^{20} , 1.5238; d_4^{20} , 1.3676; RMN (CCl₄): δ (Sn-C<u>H</u>), 5.95 ppm; δ (=C<u>H</u>), 6.50 ppm; δ (<u>CH₃</u>)₂Ge), 1.03 ppm; J(C<u>H</u>=C<u>H</u>), 11.5 Hz; IR: v(C=C), 1610 cm⁻¹).

La thermolyse de ce dérivé par distillation à pression atmosphérique conduit à l'élimination de dibutyldichlorostannane et au cycle germanié attendu : Eb₇₆₀, 138°C; n_D^{20} , 1.4843; d_4^{20} , 1.7779; RMN (C₆D₆): δ (A), 6.59 ppm (d); δ (B), 5.88 ppm (d); $J(H_A-H_B)$, 9.5 Hz; δ ((CH₃)₂Ge), 0.37 ppm; δ ((CH₃)₂C), 1.28 ppm.

II. Caractéristiques physico-chimiques

Spectrographie infrarouge. Les spectres ont été enregistrés à l'aide d'un spectrographe infrarouge Leitz double faisceau simple passage, équipé de prismes ou de réseaux. Les caractéristiques de l'appareil pour les diverses régions étudiées sont rassemblées dans le Tableau 7.

TABLEAU 7

CARACTERISTIQUES DE L'APPAREIL IR LEITZ

Région spectrale (en cm ⁻¹)	Prisme ou réseau	Largeur spectrale de fente (cm^{-1})	Erreur (cm ⁻¹)	Etalonnage
3700-2500	300 t/mm	1	1	H ₂ O et CH ₄
1800-1300	150 t/mm	1	1	H ₂ O
1300-750	NaCI	2.5	1	NH ₃
750-400	KBr	5	1	1,2,4-trichloro- benzène

Les composés sensibles à l'hydrolyse ont été manipulés en caisson anhydre, sous atmosphère d'argon ou d'hélium. Selon les régions spectrales, nous avons utilisé pour l'enregistrement des spectres des composés en solution dans les solvants organiques, des cellules d'épaisseur variable en NaCl et KBr. Les concentrations ont été de l'ordre de 0.1-1 M pour des épaisseurs de 0.1 mm.

En ce qui concerne les solvants, nous avons utilisé le tétrachlorure de carbone pour la région 4000-850 cm⁻¹, le sulfure de carbone de 1300 à 400 cm⁻¹ et, lorsque les composés réagissaient avec le sulfure de carbone, le cyclohexane et l'hexane de 850 à 400 cm⁻¹, et enfin le chloroforme ou le bromoforme comme donneur de protons.

Sur chaque spectre ont été enregistrés les spectres de référence (vapeur d'eau, méthane, ammoniac et 1,2,4-trichlorobenzène) par rapport auxquels nous avons repéré la position des bandes d'absorption des produits étudiés.

Spectrographie Raman. Les spectres de diffusion des composés à l'état pur furent enregistrés sur un spectrographe Raman Coderg type CH-1 à source laser He-Ne (raie excitatrice à 6328 Å) de puissance 100 mW. En général, la fente utilisée a une largeur spectrale de 4 à 8 cm⁻¹.

REMERCIEMENTS

Les auteurs remercient Mademoiselle M.T. Forel, Maître de Recherches, au C.N R.S., pour ses précieux conseils.

BIBLIOGRAPHIE

- 1 A. Marchand, M-T Forel, M Lebedeff et J Valade, J Organometal Chem, 26 (1971) 69
- 2 M Massol, J Barrau et J Satgé, J Organometal Chem, 25 (1970) 81
- 3 A Marchand et J Valade, J Organometal Chem, 12 (1968) 305
- 4 M Massol, J Satgé et J Barrau, C R Acad Sci Sér C, 268 (1969) 1710
- 5 M Massol, J Barrau et J Satgé, J Heterocycl Chem, 7 (1970) 783
- 6 M Massol, J Satgé et B Bouyssières, Syn. Inorg Metalorg Chem, 3 (1973) 1
- 7 B Bouyssières, Thèse de 3me cycle, Toulouse, 1971
- 8 M Lebedeff, Thèse Docteur-Ingénieur, Bordeaux, 1969
- 9 K M Mackay et R Watt, Spectrochim Acta, Part A, 23 (1967) 2761
- 10 A Marchand, M-T Forel, F Métras et J Valade, J Chum Phys, 61 (1964) 343
- 11 M Rey-Lafon et M-T Forel, Bull Soc Chim Fr, 4 (1967) 1145
- 12 J R Durig, J M Karriker et W C Harris, Spectrochim Acta, Part A, 27 (1971) 1955
- 13 F Vovelle, A Le Roy et S Odiot, J Mol. Struct, 11 (1972) 53
- 14 N Baggett, S Barker, A B. Foster, R. H Moore et D H Whiffen, J Chem Soc, (1960) 4565
- 15 J Mendelsohn, A Marchand et J Valade, J Organometal Chem, 6 (1966) 25
- 16 J Mendelsohn, Thèse Docteur-Ingénieur, Bordeaux, 1967
- 17 S A Barker, E J Bourne, R. Pinkard et D H Whiffen, J Chem Soc, (1959) 802, 807
- 18 J Satgé et G Dousse, Helv Chim Acta, 55 (1972) 2406
- 19 A Marchand, M Massol et J Barrau, résultats à paraitre
- 20 L M Sverdlov et E N Krainov, Opt Spectros VI 3 (1959) 214
- 21 J Laane, J Chem Phys, 52 (1970) 358
- 22 A Marchand, C Lemerle et M-T Forel, J Organometal Chem, 42 (1972) 353
- 23 A Marchand, J Mendelsohn, M Lebedeff et J Valade, J Organometal Chem, 17 (1969) 379
- 24 N N Vyshinskii, Tr Khum Khum Tekhnol, 1 (1963) 18